p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.533C23, C4.1542+ (1+4), (C4×D8)⋊36C2, C4⋊D8⋊44C2, C8⋊3D4⋊23C2, C4⋊C4.190D4, C8⋊4Q8⋊25C2, C2.73(D4○D8), C8.24(C4○D4), (C2×Q8).145D4, D4.2D4⋊51C2, C8.12D4⋊26C2, C4⋊C4.454C23, C4⋊C8.156C22, (C2×C4).595C24, (C4×C8).213C22, (C2×C8).124C23, Q8.D4⋊51C2, SD16⋊C4⋊52C2, C8⋊C4.82C22, C2.49(Q8⋊6D4), (C2×D4).289C23, (C4×D4).228C22, (C2×D8).170C22, (C2×Q16).42C22, (C2×Q8).274C23, (C4×Q8).218C22, C2.D8.231C22, C4⋊1D4.112C22, Q8⋊C4.98C22, (C2×SD16).79C22, C4.4D4.95C22, C22.855(C22×D4), D4⋊C4.103C22, C2.110(D8⋊C22), C22.53C24⋊10C2, C4.173(C2×C4○D4), (C2×C4).659(C2×D4), SmallGroup(128,2135)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 408 in 190 conjugacy classes, 86 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×10], C22, C22 [×12], C8 [×2], C8 [×3], C2×C4 [×3], C2×C4 [×4], C2×C4 [×8], D4 [×14], Q8 [×5], C23 [×4], C42, C42 [×2], C42 [×2], C22⋊C4 [×12], C4⋊C4, C4⋊C4 [×4], C4⋊C4 [×2], C2×C8 [×2], C2×C8 [×2], D8 [×5], SD16 [×6], Q16, C22×C4 [×4], C2×D4 [×4], C2×D4 [×4], C2×Q8, C2×Q8 [×2], C4×C8, C8⋊C4 [×2], D4⋊C4 [×4], Q8⋊C4 [×2], C4⋊C8, C4⋊C8 [×2], C2.D8, C4×D4 [×4], C4×D4 [×2], C4×Q8, C4×Q8 [×2], C22.D4 [×4], C4.4D4 [×4], C4.4D4 [×2], C4⋊1D4 [×2], C2×D8 [×2], C2×D8 [×2], C2×SD16 [×4], C2×Q16, C4×D8, SD16⋊C4 [×2], C8⋊4Q8, C4⋊D8 [×2], D4.2D4 [×2], Q8.D4 [×2], C8.12D4, C8⋊3D4 [×2], C22.53C24 [×2], C42.533C23
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×2], C24, C22×D4, C2×C4○D4, 2+ (1+4), Q8⋊6D4, D8⋊C22, D4○D8, C42.533C23
Generators and relations
G = < a,b,c,d,e | a4=b4=c2=1, d2=a2b2, e2=a2, ab=ba, ac=ca, dad-1=a-1b2, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=a2b2c, ece-1=bc, ede-1=b2d >
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 28 20 23)(2 25 17 24)(3 26 18 21)(4 27 19 22)(5 12 15 62)(6 9 16 63)(7 10 13 64)(8 11 14 61)(29 40 33 41)(30 37 34 42)(31 38 35 43)(32 39 36 44)(45 56 49 57)(46 53 50 58)(47 54 51 59)(48 55 52 60)
(1 48)(2 45)(3 46)(4 47)(5 42)(6 43)(7 44)(8 41)(9 35)(10 36)(11 33)(12 34)(13 39)(14 40)(15 37)(16 38)(17 49)(18 50)(19 51)(20 52)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 61)(30 62)(31 63)(32 64)
(1 32 18 34)(2 35 19 29)(3 30 20 36)(4 33 17 31)(5 53 13 60)(6 57 14 54)(7 55 15 58)(8 59 16 56)(9 45 61 51)(10 52 62 46)(11 47 63 49)(12 50 64 48)(21 42 28 39)(22 40 25 43)(23 44 26 37)(24 38 27 41)
(1 30 3 32)(2 31 4 29)(5 50 7 52)(6 51 8 49)(9 54 11 56)(10 55 12 53)(13 48 15 46)(14 45 16 47)(17 35 19 33)(18 36 20 34)(21 39 23 37)(22 40 24 38)(25 43 27 41)(26 44 28 42)(57 63 59 61)(58 64 60 62)
G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,28,20,23)(2,25,17,24)(3,26,18,21)(4,27,19,22)(5,12,15,62)(6,9,16,63)(7,10,13,64)(8,11,14,61)(29,40,33,41)(30,37,34,42)(31,38,35,43)(32,39,36,44)(45,56,49,57)(46,53,50,58)(47,54,51,59)(48,55,52,60), (1,48)(2,45)(3,46)(4,47)(5,42)(6,43)(7,44)(8,41)(9,35)(10,36)(11,33)(12,34)(13,39)(14,40)(15,37)(16,38)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,32,18,34)(2,35,19,29)(3,30,20,36)(4,33,17,31)(5,53,13,60)(6,57,14,54)(7,55,15,58)(8,59,16,56)(9,45,61,51)(10,52,62,46)(11,47,63,49)(12,50,64,48)(21,42,28,39)(22,40,25,43)(23,44,26,37)(24,38,27,41), (1,30,3,32)(2,31,4,29)(5,50,7,52)(6,51,8,49)(9,54,11,56)(10,55,12,53)(13,48,15,46)(14,45,16,47)(17,35,19,33)(18,36,20,34)(21,39,23,37)(22,40,24,38)(25,43,27,41)(26,44,28,42)(57,63,59,61)(58,64,60,62)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,28,20,23)(2,25,17,24)(3,26,18,21)(4,27,19,22)(5,12,15,62)(6,9,16,63)(7,10,13,64)(8,11,14,61)(29,40,33,41)(30,37,34,42)(31,38,35,43)(32,39,36,44)(45,56,49,57)(46,53,50,58)(47,54,51,59)(48,55,52,60), (1,48)(2,45)(3,46)(4,47)(5,42)(6,43)(7,44)(8,41)(9,35)(10,36)(11,33)(12,34)(13,39)(14,40)(15,37)(16,38)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,32,18,34)(2,35,19,29)(3,30,20,36)(4,33,17,31)(5,53,13,60)(6,57,14,54)(7,55,15,58)(8,59,16,56)(9,45,61,51)(10,52,62,46)(11,47,63,49)(12,50,64,48)(21,42,28,39)(22,40,25,43)(23,44,26,37)(24,38,27,41), (1,30,3,32)(2,31,4,29)(5,50,7,52)(6,51,8,49)(9,54,11,56)(10,55,12,53)(13,48,15,46)(14,45,16,47)(17,35,19,33)(18,36,20,34)(21,39,23,37)(22,40,24,38)(25,43,27,41)(26,44,28,42)(57,63,59,61)(58,64,60,62) );
G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,28,20,23),(2,25,17,24),(3,26,18,21),(4,27,19,22),(5,12,15,62),(6,9,16,63),(7,10,13,64),(8,11,14,61),(29,40,33,41),(30,37,34,42),(31,38,35,43),(32,39,36,44),(45,56,49,57),(46,53,50,58),(47,54,51,59),(48,55,52,60)], [(1,48),(2,45),(3,46),(4,47),(5,42),(6,43),(7,44),(8,41),(9,35),(10,36),(11,33),(12,34),(13,39),(14,40),(15,37),(16,38),(17,49),(18,50),(19,51),(20,52),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,61),(30,62),(31,63),(32,64)], [(1,32,18,34),(2,35,19,29),(3,30,20,36),(4,33,17,31),(5,53,13,60),(6,57,14,54),(7,55,15,58),(8,59,16,56),(9,45,61,51),(10,52,62,46),(11,47,63,49),(12,50,64,48),(21,42,28,39),(22,40,25,43),(23,44,26,37),(24,38,27,41)], [(1,30,3,32),(2,31,4,29),(5,50,7,52),(6,51,8,49),(9,54,11,56),(10,55,12,53),(13,48,15,46),(14,45,16,47),(17,35,19,33),(18,36,20,34),(21,39,23,37),(22,40,24,38),(25,43,27,41),(26,44,28,42),(57,63,59,61),(58,64,60,62)])
Matrix representation ►G ⊆ GL6(𝔽17)
1 | 2 | 0 | 0 | 0 | 0 |
16 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
13 | 9 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 14 |
0 | 0 | 0 | 0 | 3 | 14 |
0 | 0 | 14 | 3 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,16,0,0,0,0,2,16,0,0,0,0,0,0,0,4,0,0,0,0,13,0,0,0,0,0,0,0,0,4,0,0,0,0,13,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[13,4,0,0,0,0,9,4,0,0,0,0,0,0,0,0,14,14,0,0,0,0,3,14,0,0,14,3,0,0,0,0,14,14,0,0],[13,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,1,0,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
Character table of C42.533C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 8A | 8B | 8C | 8D | 8E | 8F | |
size | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | -2 | 0 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 2 | 2 | 0 | -2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | -2 | -2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | -2 | 2 | 0 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | 2i | 0 | 2i | 0 | 0 | 2i | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | 2i | 0 | 2i | 0 | 0 | 2i | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | 2i | 0 | 2i | 0 | 0 | 2i | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | 2i | 0 | 2i | 0 | 0 | 2i | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ (1+4) |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | orthogonal lifted from D4○D8 |
ρ27 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | 0 | 0 | orthogonal lifted from D4○D8 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊C22 |
In GAP, Magma, Sage, TeX
C_4^2._{533}C_2^3
% in TeX
G:=Group("C4^2.533C2^3");
// GroupNames label
G:=SmallGroup(128,2135);
// by ID
G=gap.SmallGroup(128,2135);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,723,436,346,304,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=1,d^2=a^2*b^2,e^2=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=a^2*b^2*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d>;
// generators/relations